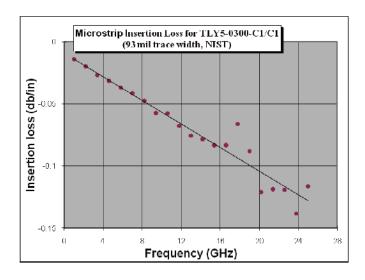
TLY-5A

Avionics & aerospace grade very low DK base material

Benefits

- Dimensionally Stable
- Lowest Df
- High Peel Strength
- Low Moisture Absorption
- Uniform, Consistent Dk
- Laser Ablatable


Applications

- Automotive Radar
- Satellite/Cellular Communications
- Power Amplifiers
- LNBs, LNAs, LNCs
- Aerospace
- Ka, E and W band Applications

TLY-5A laminates are manufactured with very lightweight woven fiberglass and are much more dimensionally stable than chopped fiber reinforced PTFE composites. The woven matrix in the TLY-5A material yields a more mechanically stable laminate that is suitable for high volume manufacturing. The low dissipation factor enables successful deployment for automotive radar applications designed at 77 GHz as well as other antennas in millimeter wave frequencies.

Comparative OEM testing at 77 GHz of lightly reinforced TLY-5A vs. its closest chopped fiber reinforced competitor has shown "drop in"/equivalent insertion losses/dielectric properties. The primary benefit is much higher manufacturing yields. The dielectric constant range is 2.17 to 2.40. For most thicknesses, the dielectric constant can be specified anywhere within this range with a tolerance of +/- .02. In the low dielectric constant range, the dissipation factor is approximately 0.0009 at 10 GHz. Typical applications include satellite communications, automotive radar, filters, couplers, avionics and phased array antennas.

Properties	Conditions	Typical Value	Unit	Test Method		
Electrical Properties						
Dielectric Constant	@ 10 GHz	2.17 <u>± 0.02</u>		IPC-650 2.5.5.5		
Dissipation Factor	@ 10 GHz	0.0009		IPC-650 2.5.5.5		
		10 ¹⁰	Mohms/cm	IPC-650 2.5.17.1 (after elevated temp.)		
Volume Resistivity		10 ¹⁰	Mohms/cm	IPC-650 2.5.17.1 (after humidity)		
Confere Bestetistes		108	Mohms	IPC-650 2.5.17.1 (after elevated temp.)		
Surface Resistivity		108	Mohms	IPC-650 2.5.17.1 (after humidity)		
Thermal Properties						
Thermal Conductivity		0.22	W/M*K	ASTM F 433		
	Х	26				
CTE (25-260°C)	Υ	15	ppm/°C	ASTM D 3386 (TMA)		
	Z	217				
Mechanical Properties						
Peel Strength	1/2 oz. ED copper	1.96 (11)	N/mm (Ibs/in)	IPC-650 2.4.8		
	1 oz. CL1 copper	2.86 (16)	N/mm (Ibs/in)			
	1 oz. C1 copper	3.04 (17)	N/mm (lbs/in)			
		2.32 (13)	N/mm (lbs/in)	IPC-650 2.4.8 (at elevated temp.)		
Flavoral Strangth	MD	96.91 (14,057)	N/mm² (psi)	- IPC-650 2.4.4		
Flexural Strength	CD	89.32 (12,955)	N/mm² (psi)			
Voung's Modulus	MD	9.65 X 10 ³	N/mm² (psi)	ACTIA D 2020 / IDC 650 2 4 10		
Young's Modulus	IVID	(1.4 X 10 ⁶)	N/IIIII- (psi)	ASTM D 3039 / IPC-650 2.4.19		
Poisson's Ratio	MD	0.21		ASTM D 3039 / IPC-650 2.4.19		
Density	Specific Gravity	2.19	g/cm³	ASTM D 792		
Dimensional Stability	MD, 10 mil	-0.038	mm/M (mils/in)	IPC-650 2.4.39		
	CD, 10 mil	-0.038	mm/M (mils/in)	(avg. after bake & thermal stress)		
Chemical / Physical Properties						
Moisture Absorption		0.02	%	IPC-650 2.6.2.1		
	TML	0.01	%			
NASA Outgassing	CVCM	0.01	%			
	WVR	0.01	%			

Typical Thicknesses						
Inches	mm	Inches	mm			
0.0035	0.09	0.0200	0.51			
0.0050	0.13	0.0300	0.76			
0.0075	0.19	0.0600	1.52			
0.0100	0.25					

0.0200	0.20				
Available Sheet Sizes					
Inches	mm	Inches	mm		
12 x 18	305 x 457	16 x 36	406 x 914		
16 x 18	406 x 457	24 x 36	610 x 914		
18 x 24	457 x 610	18 x 48	457 x 1220		

^{*} All test data provided are typical values and not intended to be specification values. For review of critical specification tolerances, please contact a company representative directly.

^{*} TLY-5A can be manufactured in increments of 0.005" (0.125mm).

^{*} Standard panel size is 18" x 24" (457 mm x 610 mm).

^{*} Please contact AGC for availability of additional thicknesses, other sizes & any other type of cladding.